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Similar i ty  laws are  derived for the Coulomb components of the thermodynamic,  kinetiC, 
and optical proper t ies  of a p lasma in a wide range of pa rame te r s .  The most  probable form 
of the s tat is t ical  Coulomb potential is established for a nonideal p lasma on the basis of the 
experimental  data on the indicated proper t ies .  

Effects due to nonideal behavior of a p lasma become manifest  when the p lasma density is increased.  
Owing to its long-range action, the Coulomb potential affects p r imar i ly  the p lasma proper t ies  governed by 
the interact ions of the charged par t ic les  with one another.  We shall agree to charac te r ize  the Coulomb 
nonideality of the p lasma by the rat io of the e lectrosta t ic  energy of the charge interaction at the mean dis-  
tanee between them to their  mean thermal  energy 

7 = e2n~/3/kT 

(for simplicity, the ions are  assumed to be singly charged throughout this art icle) .  When 7 << 1, the p tas-  
ma can be regarded  as an ideal sys tem whose proper t ies  can be determined within the f ramework  of the 
Debye-Hi ickel  theory.  With increas ing y, the number of charged par t ic les  in a sphere of Debye radius 
decreases ,  and at ~/ ~ 10 -1, when the Debye-H~ickel theory ceases  to hold, the number  reaches values on 
the o rder  of unity. 

Theoret ica l  investigations aimed at describing the Coulomb proper t ies  of a nonideal p lasma entail 
considerable mathematical  difficulties, thus pointing to the importance of experiments  devoted to this 
question. Unfortunately, reliable measurement  in a h igh-pressure  p lasma at high tempera tures  is a 
ra ther  complicated mat te r ;  only ve ry  few publications contain information on the Coulomb proper t ies  of a 
nonideal plasma, and these re fe r  to experiments  per formed on different substances,  with different working 
pa rame te r s  ( temperatures  and pressures ) ,  aimed at measur ing  different p lasma proper t ies  (electric con- 
ductivity, in f ra red- rad ia t ion  intensity, equation of state, etc.). 

The purpose of the present  paper is to establish a connection between different Coulomb proper t ies  
of a p lasma and to derive s imi lar i ty  laws that make it possible to extend the results  of par t icu lar  exper i -  
rnents to other proper t ies ,  substances,  and plasma working pa rame te r s .  

Our analysis  is limited to the following conditions: 1) the plasma is assumed to be nondegenerate, 
kenle/3 << 1; 2) it is assumed that the dynamics of the Coulomb interactions can be descr ibed in the c lass ica l  
approximation, ~eaC << 1 or  T << 105~ 3) it is assumed that the internal s t ruc ture  of the interacting par t i -  
cles does not affect their  dynamics,  a i / a  C << 1 or T << 1.5 �9 105 ~ for hydrogen and T << 3 �9 104 ~ for ces ium.* 
In spite of the indicated limitations, the paper deals with a wide range of variat ion of p lasma pa ramete r s  
in different substances and in different devices such as plasmotrons;  shock tubes, p lasma installations with 
res is t ive  heating, magnetohydrodynamie genera tors ,  thermionic conver ters ,  etc. 

�9 The effect of the ion dimension on the t ranspor t  Coulomb c ross  section was investigated in detail in [1 ] 
in a wide tempera ture  range. The observed effect does not exceed the experimental  e r r o r  of the data con- 
s idered below and is therefore  d is regarded .  
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We assume that in a nonidea[ plasma the Coulomb field of the charged par t ic les  is screened at a c e r -  
tain charac te r i s t i c  distance rs(ne, T), and express  the effective interaction potential between them in the 
form 

r (r) = (e~/r) exp (--r/rs), (li 

where r s sat isf ies the condition 

lira r s := r D . ~f (2) 
~ 0  

Equation (2) means in effect that the potential of (1) is a continuation of the Debye potential in the non- 
ideal p lasma.  L e t  rs(ne, T) = Vine t/3, where a = o~(T) is a dimensionless function that mus t  be determined 
and contains all the stat is t ical  s ingulari t ies  due to the Coulomb nonideal cha rac te r  of  the plasma.  We cal -  
culate below the main plasma proper t ies  governed by the interact ions of the charged par t ic les  with the 
effective potential (1). 

1, Thermodynamic Proper t i es .  The change of the potential energy of the charged part icle  as a r e -  
suit of the interaction with the aggregate of the remaining charged par t ic les  of the sys tem is 

e ~ e ~ 
A~p = tp (r) - -  - -  ~ . . . .  ?kT/o~ (?). (3) 

r . t" a 

This relat ion descr ibes  the e lect ros ta t ic  decrease  of the ionization potential, AI, which assumes  the 
dimensionless  form 

hi* ~ - -  h l / k T  : 7 / a  (?). (4) 

The e lect ros ta t ic  correc t ion  to the specific internal energy of the sys tem is AE = neA~0, or  in dimension-  
less form 

AE* = - -  h E e 6 / ( k T )  * = 7't/a (~), (5) 

and the cor rec t ion  to the free energy (per particle) is 

AF k T  ( A ~ ( k T ) - ~  d ( k T )  = - - e ~ n ~ / 3 k T  f a - l ( v ) ( k T ) - S  d ( k T ) "  (6) 
k~ kr 

Using the known thermodynamic relations,  one can obtain expressions for the e lect ros ta t ic  cor rec t ions  to 
all other thermodynamic functions of the plasma, if the form of the function ~(T) is known.~ 

2. Kinetic Proper t i es .  In the two-par t ic le- in terac t ion  approximation, using (1) in the dimensionless 
form ~*(r) = ~( r*) /kT = (T/a(7)r*)exp (-r*) ,  we can obtain the following express ions  for the effective 
angle • of inclination of the charged par t ic les  i and j, for the Coulomb c ross  section Q .~)* = / v r  2, and 
for the dimensionless  averaged Coulomb c ross  section Q.(i~, s)* =-O('/"s)/Trr2 " l j  - s" 

Xlj : ~ --2b* i (1 - -  b*2/r .2 - -  exp ( - - r * ) / r * g ~ 2 ) - l / e r * - 2 d r  *, 

r 0 

Q~l), i 
~1 = 2 (1--coslx~j)b*db *, 

0 

q = (s +'1)! 1 2(1 + l )  -~1~ ~q ~ ,  
0 

x = ~g*2/a  (7). 

"~This is not the only possible choice. It is perfect ly legitimate, for example, to use a Coulomb potential 
that is  cut off at r s. It was shown in [2], for a Debye plasma,  that the two approaches are in fact equiva- 
lent. 
:tin this paper, T is assumed known throughout. In the ease of a part ly ionized plasma this means that we 
know its composition, including n e. The composit ion depends in turn on the eor rec t ions  to the the rmo-  
dynamic functions of the plasma, and consequently on % so that its determinat ion is a se l f -consis tent  prob-  
lem whose solution can be obtained knowing not only the e lectrosta t ic  cor rec t ions  but also the suitably 
bounded part i t ion function of the atoms.  
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We see that Q(/S)* depends only on 7- Knowing this dependence, we can calculate theCoulomb eom-  ij 
ponents of any t ranspor t  coefficient  of the plasma by using the Chapman-Enskog  method. In par t icular ,  
the express ions  for the n-th approximations to the Coulomb components of the e lec t r i c  conductivity (r(~), of 
the v iscos i ty  ~?(~), and of the thermal  conductivity ~(~) can be expressed  in the fo rm of the following di-  
mens ionless  complexes that depend on y: 

Here  K(~)~, ~ 

skog theory [3]: 

where 

a~n). : ( ~ ,  e2m~/e _ K(.) (~) 3 I./'2 ?~ 
( I , I ) *  

(kT) ~?- 1 6 V - ~  od (71 Q~. (?) 

(kT)S/z --  (7) 16 V Z a2(7)Q(fd 2)* (7) ' 

3Kn(l,u, _ 2 t 3 ( I , 2 ) ,  

(kT) s/2 64 [/~cG(7 ) nil.l), ~19n(1.a). ~ (2a). 

a re  the d imensionless  cor rec t ions  for the h ighe r -o rde r  approximations of the C h a p m a n - E n -  

K[ :) = 

L12 175 n(l,0, 
- - "  , K e r r  - -  - -  

6 

K(3) Loo ( LnL22 - -  L~2) 
0 

LooLnL22 § 2LoxLo2L~ - -  LooLf2 - -  LnL2o2 - -  L~2L2o; 

K(~ 2> = (1 --  kgdkookn) -1, 

( LooL n - -  L 2o~) [ L22 ( Lol + Loo) - -  Lo2 ( LI2 + L02)] 
(Lo~ § L0.) (L00L~.L2~ + 2LolLo2L~ - -  LooL: , :  - -  L . L g 2  - -  LMgS- '  

Lo 0 _ ( . ) (1 , i ) ,  _ 5 t,.)(l,l) , _ 2/.)(1,2) * - -  ,~eu , Lol  - -  - ~ -  ,eeu ~,~eu , 

gn 25 o(1, i) , 1Ko(1,2) , i Q/.)(I,3) , 1/~ r * 
= , ~ . e u  - -  ~ ' . . ~ e u  2 1 -  �9 ~ , ~ e a  - ~  r w . e e  

4 

Lo z _ 35 o(1,1), 21 O(1,2), R()(I,3) , 

8 2 

315 n(,,2~, ~ 7 0 ( 1 , 3 )  , 2f)/-)(1,4)* 7 ] ~ 2 -  0 ( 2 , 2 ) ,  ]/-~-O(2,3), 
,<eu § ~-,<eu - -  ~-'~e,, § - -  ,~ee - -  2 r -  ,.~ee , 

8 4 

(7) 

(s) 

(9) 

dK 
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Fig. 1. Dimensionless  Coulomb component of the e lec-  
t r ic  conductivity vs.  p lasma nonideality (or vs.  the Spit- 
z e r  Coulomb logari thm: 1) Spi tzer ' s  theory [17]; 2 )asymp-  
totic theor ies  [18, 19]; 3 and 4) average  empir ica l  curves  ; 
5) [5]; 6) [6]; 7) [7]; 8)[8];  9) [9]; 10)[10]; 11) [11]; 12) [12]; 
13) [12]; 14)[13];  15) [14]; 16) [15]; 17) [16]. 
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L~z_ 1225 n('.o* 735 t~(~,2), + 399 @~,a). _210Q~.4). 
64 ~ 8 ~ 

77V2 Q~2,:), 7 V 2 Q I  2'3)*' + 5V2-q~ '41., (x,5), 
90Q~, + 16 

i 0~O(2'2) ~: 

OOAF)(2.2), 256n(~,31, 

2408 nl~.~)* 896 n(~,a)* ~ a n n  (2'41. 
kii - -  3 

3. Optical P r o p e r t i e s :  B rem s s t r ah l ung  Emis s ion  and.Absorpt ion in the Ion Field.  The s ingular i t ies  
of the screening  of the e h a r g e d - p a r t i c i e  Coulomb field in a nonideal p l a s m a  affect  a lso  i ts  op t i c a lp ro p e r t i e s  
which are  governed by the Coulomb in terac t ions .  The c h a r a c t e r  of this influence can be d iscerned  f r o m  
the expres s ions  for  the d imens ion less  complexes  wri t ten down by analogy, for  example ,  with (7)-(9) for  
the spec t ra [  coefficient of the t rue b r em s s t r ah lung  absorpt ion and emiss ion  coefficient  of the p l a s m a  (with- 
out allowance for  se l f -absorp t ion)  at low frequencies  (hu << kT): 

6 3 3/2 e chv m e 4 V-2  
• : • (kT) u/2 3 V 6 In [3~(,0/7], (13) 

e* = e e6cSm~/2 16 
_ y6 In [3a (~)ly]. T (14) 

(kT) u/2 3 V-2-~ 

Thus, the d imens ion less  complexes  in the lef t-hand sides of Eqs .  (4)-(14) depend on the single p a r a m -  
e t e r  y. Consequently, the condition for  the s imi l a r i ty  of the Coulomb p rope r t i e s  of a p l a s m a  is e x p r e s s e d  
by the equation Y = eonst .  It is convenient to i l lus t ra te  this conclusion with the aid of the n e - T  d i ag ram 
(see, e.g.,  [3]): along the lines y = const, the d imens ion less  Coulomb p rope r t i e s  of the p l a s m a  AI*, AE % 
~ ~? ~,  )~*C, ~*u, e* and others  r em a i n  constant  in a wide range of p l a s m a  p a r a m e t e r s ,  including the non- 
ideali ty region (y > 10-1). The p rac t i ca l  s ignif icance of this fact  is apprec iab le ;  it enables  us to obtain in- 
fo rmat ion  on the n e c e s s a r y  Coulomb components  of any p l a sma  cha rac t e r i s t i c  at high levels  of n e and T by 
measu r ing  the cha rac t e r i s t i c  under  re la t ive ly  l ess  s t r ingent  conditions, by s imple  reca lcu la t ion  with the 
aid of the fo rmu la s  given above for the d imens ion less  complexes .  

Even g r e a t e r  opportunit ies  a re  uncovered by knowledge of the st i l l  undetermined function 047): by 
having informat ion on one of the Coulomb cha rac t e r i s t i c s  of the p lasma ,  we can es t ima te  with the aid of 
a(y) and re la t ions  (4)-(14) any other Coulomb cha rac t e r i s t i c  of the p l a sma .  

It is easy  to show that for  a Debye p l a s m a  we have 

(7) = % ('~) = % nY 3 = (Sn~) -'/2- (15) 

In the case  of a nonideal p lasma ,  the p rob lem of de te rmin ing  c~('y) analyt ical ly,  i . e . ,  the p rob lem of in- 
ves t iga t ing  the collect ive e l ec t ros ta t i c  potential  in a s y s t e m  of s t rongly in terac t ing  charged par t ic les ,  r e -  
duces,  as is known , to a solution of the many-body  p rob l em without a smal l  p a r a m e t e r  for  expansion in the 
pe r tu rba t i on - theo ry  se r i e s ,  which is stil l  imposs ib le .  In the p resen t  pape r  we a t tempt  to de te rmine  the 

~Unlike in [4], the Gaunt fac tor  G that en ters  in (13) and (14) is obtained by l imit ing the in tegra l  of the ef-  
fect ive radia t ion flux of the monoenerget ic  e lec t rons  in the ion field to the impac t  dis tance bma  x = rs ,  i .e. ,  
h e r e  G = (~3/Tr)ln [r s / ( e 2 / 3 k T ) ] .  

TABLE 1. Results  of the Calculation of the Functions K0)(y, oz) and 
o-(~)* (% cd 

y/ct (7) 1,00/1") 1,00/0 ]5,00/~ [3,33/]- 2,50~ '1,67~ 
K~ a, I 0,89l 1,319 1,355 )l,367 1,377 1,386 

off  .10, 21,17 /4,367 13,134 12,63  2,362/2,046 

1,425 11,428 1,431 1,438 1,442 1,445 
~ .10 L 1,081 !11,012 0.966 0,846 0,788 0,751 

1.25~ 11.00/T [5.005/3.33/2-i2,5012 

[ 

1,449 ]1,451 I 453 1,467 ~{!,472 
0,707]0,675 0,65210,49010391 

"I.00/I means 1.00.I0! 
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c h a r a c t e r  of c~(T) by e m p i r i c a l  m e a n s .  To this end, spec ia l  m e a s u r e m e n t s  were  made  of  the e l e c t r i c a l  conduc-  
t ivi ty o f a  nonideal  c e s i u m  p l a s m a  at T = 1300 to 2700~ P = 10-2-1 atm absolute ,  and 3, = (0.24-1.0) �9 10 -1 [5]. 
An ana lys i s  of the l i t e r a t u r e  has  shown that  i n fo rma t ion  on the Coulomb componen t  of the e l ec t r i c  con -  
duct iv i ty  of a nonideal  p l a s m a  can  a l so  be obtained f r o m  the r e s u l t s  of s e v e r a l  publ ished expe r imen ta l  
p a p e r s  [6-16]. We l is t  the expe r imen ta l  condi t ions  in these  p a p e r s :  

1) s t a t i ona ry  e l e c t r i c  a r c  in c e s i u m  vapor ,  Te  = 3360-10800~ P ~ 10-~-10 -3 ata, 3, = (0.3-4.8) �9 1 0  - 2  

[6]; 

2) qu iescen t  p o t a s s i u m  p l a s m a  in Q-mach ine ,  T = 2400-3040~ P ~ 10 -6 ata, 3, = (6.7-9) �9 103 [7]; 

3) s h o r t - d u r a t i o n  e l e c t r i c  a r c  in h e l i u m -  c e s i u m  mix tu re ,  T = 4200-5400~ P = 4 .5-7 .2  ata, 3, 
= ( 1 . 2 - 1 . 6 5 )  �9 1 0  -1  [ 8 ] ;  

4) s t a t i ona ry  e l e c t r i c  a r c  in hel ium,  T = 6000-22000~ P = 1 ata, 3, = (1-3.63) .10 -2 [9]; 

5) pulsed e l e c t r i c  a r c  in xenon,  argon,  and krypton,  T = 8800-17500~ Pin i t  = 100 to 600 m m  Hg, 
n a = (7.3-0.62) "1018 c m  -3, ne = (0.25-2) -1018 c m  -3, 3, = (0 .8-1 .4)  "10 -1 [10]; 

6) s t a t i ona ry  e l e c t r i c  a r c  in h y d r o g e n  T = 7000-27000~ P = 1 ata, 3, = (3.3-6) �9 1 0  - 2  [11]; 

7) s t a t i ona ry  e l e c t r i c  a r c  in hydrogen ,  n i t rogen,  and argon,  T = 7000-14000~ P = 0 .2-2  ata, 3' 
= (4-6.5) �9 10 -2 [12]; 

8) s t a t i ona ry  e l e c t r i c  a r c  in hel ium,  T = 15000-17000~ P = 10 ata, 3' = (3-4) �9 1 0  - 2  [13]; 

9) s t a t i ona ry  e l e c t r i c  a r c  in n i t rogen ,  T = 5000-13000~ P = 1 ata,  3, = ( 4 - 6 ) - 1 0  -2 [14]; 

10) pulsed e l e c t r i c  a r c  in c e s i u m  vapor ,  T e = 7000-9000~ P ~ 10 -3 ata, Q = ( 1 . 3 - 1 . 7 ) ' 1 0  -2 [15]; 

11) s t a t i ona ry  e l e c t r i c  a r c  in argon,  T = 11500-12950~ P = 1-10 ata, 7 = (4.1-7.9) -10 -2 [16]. 

The expe r i m e n t a l  da ta  of [5-16] a r e  shown in Fig.  1 in the f o r m  of a 0-4(3, ) plot  (for c o m p a r i s o n ,  the 
va lues  of the  S p i t z e r - C o u l o m b l o g a r i t h m  l n A s p  a r e  m a r k e d  on the a b s c i s s a  axis) .  The points  on the d i a -  
g r a m  r e p r e s e n t  the m e a n  va lues  of or*_ and ~, fo r  each  group  of the expe r imen ta l  r e s u l t s .  The v e r t i c a l  s e g -  

C 
m e n t s  indicate  the e r r o r s  of cr~ typica l  of each expe r imen t  {with a l lowance fo r  the e r r o r  i n c u r r e d  by s e p a -  
ra t ing  the Coulomb componen t  (r C f r o m  the m e a s u r e m e n t  r e s u l t s  where  n e c e s s a r y ) .  The ho r i zon ta l  b a r s  
r e p r e s e n t  the r a n g e s  of 7 c o v e r e d  in each  of the s tud ies .  F igure  1 a lso  shows the t heo re t i c a l  da ta  [17-19] 
(curves  1 and 2). In spi te  of the apprec i ab le  s c a t t e r  of the expe r imen ta l  r e su l t s ,  it can  be s t a t ed  that  the 
g e n e r a l  t endency  o b s e r v e d  in [5], name ly  that  the expe r imen ta l  va lues  of (r C lie lower  than the t heo re t i ca l  
p red ic t ions ,  is c o n f i r m e d  by the p r e s e n t e d  da ta .  This  tendency is r e f l ec t ed  by the two m e a n - v a l u e  c u r v e s  
2 and 4 in Fig .  1. 

To d e t e r m i n e  the va lues  of (~(3,) on the bas i s  of the p r e s e n t e d  s u m m a r y  of the e x p e r i m e n t a l  m a t e r i a l ,  
it is n e c e s s a r y  to know the dependence  of the d i m e n s i o n l e s s  complex  cr~ on the ra t io  7/(~(3,). The  l a t t e r  
was ca lcu la ted  with the aid of e x p r e s s i o n s  (7) and (10) and with the d i m e n s i o n l e s s  Coulomb c r o s s  sec t ions  

0 ~  ' m I I = l |  

L f01 

I r m i m | 1 1  | 

\ 
i f 2  

" ' .  3 

too ~ ' /o  -~ 1o-' 1' 
/o 

Fig .  2. The p a r a m e t e r  (~ of the s t a t i s t i ca l  
e f fec t ive  Coulomb potent ia l  v s .  the d e g r e e  of 
nonideal i ty  of the p l a s m a :  1 and 2 c o r r e s p o n d  
to c u r v e s  3 and 4 of Fig .  1, and 3 is the Debye 
a s y m p t o t e .  

Q(~|s).(% ~) g iven  in [20] (the tabula ted da t a  of [20]were  
expanded  by addit ional  r educ t ion  [3]). The  r e s u l t s  of 
this ca lcu la t ion  a r e  l i s ted in Tab le  1. With the aid of 
the cry( 7, o~) dependence  obtained in this  m a n n e r  in the 
third  C h a p m a n - E n s k o g  app rox ima t ion  and the da ta  of 
Fig.  1 we ca lcu la ted  the va lues  of o~(3,) shown in Fig .  2. 
It tu rned  out that  c u r v e s  3 and 4 of Fig .  1 c o r r e s p o n d  to 
two p r a c t i c a l l y  hor i zon ta l  s t r a i g h t  l ines,  o~ ~ 10 and o~ 
~ 3 (l ines 1 and 2, r e s p e c t i v e l y .  ~ With d e c r e a s i n g  % 
they approach  the Debye a s y m p t o t e  (15) (line 3). 

The in fo rmat ion  obtained Concerning the funct ion 
a(3,) m a k e s  it poss ib le ,  as  indicated  above,  to e s t i m a t e  

tOne cannot  exclude the poss ib i l i t y  that v~ tends  to in-  
c r e a s e  with i n c r e a s i n g  3,, a s  indica ted  by the e x p e r i -  
menta l  da ta  of [5, 6, 12, 16], a c c o r d i n g  to which the 
m e a s u r e d  va lues  of o-~ d e c r e a s e  with i n c r e a s i n g  7. 
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6 p  ~ 

Fig. 3. Dimensionless e lect ros ta t ic  cor rec t ions  
:10. ~ to the ionization potential (AI*) and to the p r e s -  

sure  (AP*) of a p lasma vs.  the degree of its non- 
t66 ideality: 1-5) calculations based on the theories 

of Brunner,  E c k e r - W e i z e l ,  Unsold, E c k e r - K r o l ,  
and Rother [21], respectively,  for  n e = 1022 m-3; ,d 8 
6) Debye asymptote AI~); 7) ~ ~ 3; 8) ~ ~ 10; 9) 
Debye asymptote of AP~;  10) o~ ~ 3; 11) o~ ~ 10; 

IOta 12) assumed boundarieffof the region of the ex- 
i -,o per imental  data [22]. 

the Coulomb proper t ies  of the plasma at 7~< 10 -1. By way of example, Fig. 3 shows the est imated e lec t ro-  
static correc t ions  to the ionization potential and to the p re s su re  of a nonideal plasma.  The p res su re  cor -  
rect ion was calculated with the aid of (6) and the known relat ion AP = n2(3AF/0ne)T of s tat is t ical  the rmo-  
dynamics (for v~ = const we have AP* = 74/3oz, and for the Debye asymptote (15} A P ~  = (4~rv/3~f2)79/2). 
Comparison of AI* with var ious  theories  used in thermodynamic calculations [21] shows that at 7 > 10-2 
the value of this pa ramete r  is lower than the theoret ical  predict ions.  A s imi lar  conclusion can be drawn 
also with respect  to AP*, as is qualitatively confirmed by experiments on shock compress ion  of ces ium 
vapor [22], namely, at 7 = 0.5 to 1.4 no plasma phase t ransi t ions were observed, and consequently the 
Debye hypothesis of e lect ros ta t ic  lowering of the p re s su re  in a nonideal plasma is too strong. 

In light of our resu l t s ;  we can explain the corre la t ion  noted in [16] between the experimental  values 
of e and o- C. The function a(~}*(7, ~) is descr ibed sufficiently accurate ly  in the range 10 -2 ~ 7 -< 3 -10 -1 by 
the expression 

o~ )* = 0.487/In [ 1.64a (7)/71. (16) 

Comparison of (16) with (14) shows that both ~ and PC = r are  proport ional  to the Coulomb logari thm. 
It follows therefore  that at "y = const the nonideality of the p lasma affects these two charac te r i s t i cs  to an 
equal degree.  This resul t  is physical ly obvious, since both quantities descr ibe,  f rom different points of 

6.0 

! i i ~ I I W-[ ! I �9 �9 I ~ I F | 
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Fig. 4. Ratios of the experimental  values of the b r e m s -  
strahlung coefficient e and of the Coulomb component of 
the e lectr ic  resis t ivi ty  PC to their  theoret ical  values in 
the Debye approximation vs.  the degree of plasma non- 
ideality: 1, 2) PC/PCD for c~ ~ 10 and ~ ~ 3, r espec-  
tively; 3) [16]; the remaining notation is the same as in 
Fig. I. 
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view, one and the same phenomenon, interaction between charged par t ic les .  Consequently the exper imen-  
tal data on e should supplement d i rec t ly  the information on o- C for a nonideal p lasma.  This is seen f rom 
Fig. 4, which shows the T-dependence of the ratios of e and PC to the theoret ical  values e D and PCD ca l -  
culated in the Debye approximation (the experimental  values e / e  D were taken f rom [16], and the remaining 
experimental  points as well as curves  1 and 2 correspond to Fig. 1, with the theoret ical  data of [18, 19] 
used for PCD).~ We note that the aggregate of the experimental  data in Fig. 4 agrees  bet ter  with curve 1 
for c~ = 10, and also favors  the already indicated tendency of o~ to increase  with increas ing T. 

The mutual a g r e e m e n t  between the resul ts  of the measurements  of the Coulomb components of the 
kinetic (o-C) , thermodynamic  (AP), and optical (e) charac te r i s t i cs  of the p lasma conf i rms qualitatively the 
existence of s imi lar i ty  of the indicated pa ramete r s  of a nonideal (dense) plasma.  Obviously, to make the 
observed s imi la r i ty  laws more  prec i se  it is necessa ry  to pe r fo rm prec is ion  model -based  measurements ,  
say of the Coulomb component of the e lec t r ic  conductivity of a nonideal plasma.  

On the basis of the experimental  data on AP* (Fig. 3), our results  can be extended into the region of 
l a rge r  degrees  of p lasma nonideality. This operation, however, mus tbe  ca r r i ed  out with caution, since, on 
the one hand, ~ may increase  with increasing T, and, on the other hand, an increase  in the p lasma nonideality 
can give r ise  to other phenomena that affect strongly the stat ist ical  proper t ies  and the kinetics of the p las-  
ma par t ic les  [3, Chap. III]. 

ne, n i 
e 

k 

T 

~e = ~ / (2me  kT)l/~ 
li = h / 2T; 

m e ,  m- i 
c~ C = e2/kT 

ai 
r 

r D = (kT / 87rnee2) 1/2 
l, s =1,  2 , . . .  

b 
b* = b / r s ,  r* = r / r  s 

gij 
g,j = (Pijg~j ~(./)/27kT)i/2 
#ij = m i m j / ( m i  + mj) 
e 

in ASp = In [r D / ( e  z/3kT) ] 
r �9 

o 

N O T A T I O N  

are the concentrat ions of ions and electrons,  respectively,  n e = ni; 
is the e lectron charge;  
is the Boltzmann, s constant;  
is the tempera ture ;  
is the thermal  de Broglie wavelength; 
is the P lanck ' s  constant; 
are  the electron and ion masses ,  respect ively;  
is the Coulomb scat ter ing amplitude; 
is the effective dimension of the ion; 
is the distance between par t ic les ;  
is the Debye radius;  
are  indices determined by the order  of approximation in the Chapman 
- E  nskog theory;  
is the impact distance;  
are  the dimensionless  impact distance and distance between par t ic les ,  r e -  
spectively;  
is the relative velocity;  
is the dimensionless  relative velocity;  

is the reduced mass  of par t ic les  i and j ; 
is the speed of light; 
is the emiss ion frequency; 
is the Spi tzer -Coulomb logari thm; 
is the root of the equation 1 - b * 2 / r * 2 - e x p  (-r*)/r*g.*. .  2 = 0. 
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